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Summary. Axons often regrow to their targets and lost 
functions may be restored after an injury in the 
peripheral nervous system. In contrast, axonal 
regeneration is generally very limited after injuries in the 
central nervous system, and functional impairment is 
usually permanent. The regenerative capacity depends 
on intrinsic neuronal factors as well as the interaction of 
neurons with other cells. Glial cells may, in different 
situations, either support or inhibit axonal growth. This 
review discusses the molecular mechanisms that are 
involved in promoting and inhibiting axonal regeneration 
in the nervous system after injuries. 

Key words: Extracellular matrix, Macrophage, Nerve 
regeneration, Neurotrophin 

Introduction 

Transection of a nerve fiber triggers a complex set of 
events in the nerve cell body, in the axon proximal and 
distal to the lesion, in supporting glial cells and other 
non-neuronal cells. The neuronal perikaryon swells, the 
nucleus is displaced against the cell membrane, and the 
Nissl substance disintegrates, a sign of increased protein 
synthesis. This neuronal reaction to axotomy occurs to a 
different extent in different types of neurons and also 
depends on factors such as the distance to the cell body. 
Many proteins normally synthesized by a neuron will no 
longer be produced, or will be produced at low levels 
after axotomy, while other proteins that are normally 
synthesized only at low levels or not at all, will be 
expressed at high levels. This shift in gene expressing in 
response to injury probably occurs, at least in part, in 
order to optimize the neuronal capacity for regeneration 
(reviewed in Aldskogius and Svensson, 1993). After 
transection of a nerve fiber the axonal membrane will 
rapidly seal and an end swelling, the growth cone, forms. 
Thin filopodia emerging from the axonal endbulb can 
sense molecular cues in the environment and transmit 
signals to the growth cone, presumably resulting in the 
decision of which path to choose (Davenport et aI. , 
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1993). When an outgrowing axon has reestablished 
contact with the target, neuronal protein synthesis will 
return to normal. The alteration in neuronal molecular 
phenotype after axotomy seems to be triggered by the 
disrupted retrograde transport of target derived factor(s), 
since the phenotype can be reversed toward the normal if 
the required trophic factor is supplied (see e.g. Fitzgerald 
et aI., 1985). However, axons often fail to regrow and 
reinnervate the target, and moreover, neurons may even 
die in response to transection of the axon. The 
susceptibility of a neuron to death after transection of the 
axon is greater during development than in adulthood, 
probably as a result of decreasing dependence on trophic 
support for survival in the adult animal. 

While regeneration in the peripheral nervous system 
(PNS) is often rapid and successful, regeneration in the 
adult mammalian central nervous system (eNS) is 
generally not seen. After an injury in the PNS, debris is 
rapidly cleared from the denervated distal stump, 
through a process known as Wallerian degeneration. The 
Schwann cells in the distal nerve stump will line up to 
form channels, known as the bands of Btigner, through 
which the severed axons can regrow to their targets (Fig. 
1). In contrast, in the injured eNS, axon-growth is in 
most cases limited to the scar that will be formed by 
astrocytes at the site of the injury. The Wallerian 
degeneration distal to a lesion in the eNS is much 
slower than in the PNS, and a dense scar will form there 
with time (Fig. 1). There may be important intrinsic 
differences between PNS and eNS neurons in response 
to injury. However, non-neuronal factors seem to be at 
least as important. Here follows an overview of some of 
the suggested key players in promoting and inhibiting 
axonal regeneration. This review focuses on differences 
between the adult mammalian PNS and eNS in their 
response to traumatic injuries. Factors that are likely to 
be key determinants of the capacity of axonal 
regeneration are discussed, and a few examples are 
mentioned in each case. 

Intrinsic neuronal regenerative capacity 

Aguayo and collaborators demonstrated that axons of 
eNS neurons can grow long distances through PNS 
tissue by grafting segments of peripheral nerve to the 



Determinants of axonal regeneration 

injured brain, spinal cord, and optic neme (Reviewed by 
Aguayo et al., 1991). This clearly demonstrated that the 
lack of regeneration within the CNS is not due entirely 
to a weak intrinsic neuronal regenerative capacity. 
Instead, this indicates that the CNS environment fails to 
stimulate axon regrowth or that the CNS contains axon- 
regrowth inhibiting molecules. The latter theory was also 
supported by the lack of PNS axon-growth in a CNS 
graft (Aguayo et al., 1978). However, intrinsic neuronal 
factors rnay indeed lirnit axonal regrowth in the CNS in 
some situations (reviewed by Fawcett, 1992). For 
example, the capacity of CNS neurons to innervate a 
peripheral neme graft inserted in the injured spinal cord, 
brain or optic neme decreases with increasing distance 
between the neuronal cell body and the injury (David 
and Aguayo, 1981; Benfey and Aguayo, 1982; 
Richardson et al., 1984; Vidal-Sanz et al., 1987). This is 
probably a result of a weaker triggering of regenerative 
programs in the neuron when the lesion is far from the 
cell body, as indicated by the fact that the growth- 
associated protein GAP-43 is induced in retina1 ganglion 
cells only if the axotomy is within the first mm of the 
optic neme (Doster et al., 1991). The distance between 
the cell body and the site of axotomy does not seem to 
be an important determinant of axonal regeneration in 
the PNS, since axons can regrow successfully even after 
the axon is cut close to the target. Other intrinsic 

PNS CNS 

Flg. 1. Schematic drawing depicting the main cellular reactions after 
injuries in the PNS and CNS. In the PNS, the Schwann cells in the distal 
neme stump line up to form channels through which the axons can 
regrow. In the CNS, clearance of axonal debris and myelin is slow distal 
to the injury, and asirocytes form a dense scar. The axonal growth in the 
injured CNS is limited to the site of the lesion. 

neuronal differences that rnay render CNS neurons less 
likely than PNS neurons to regenerate successfully rnay 
be related to the facts that central neurons are more 
likely to die after axotomy than PNS nerve cells 
(Sunderland, 1978), and that the formation of ectopic 
terminals on nearby neurons rnay impede axonal 
regrowth in the CNS (Bernstein and.Bernstein, 1971 ). 

That axons from neurons in the brain and spinal cord 
can grow in peripheral nerve grafts indicates that the 
extracellular environment provided by glial and other 
cell types rnay be crucial for the regeneration process. In 
different situations non-neurona1 cells rnay either 
stimulate axon-growth by e.g. secreting neurotrophic 
molecules or extracellular matrix molecules or actively 
inhibit axonal regeneration by repelling growth cones. 

Neurotrophic molecules 

Much of the research on the role of neurotrophic 
factors in regeneration has focused on the neurotrophin 
family. This family consists of the prototypical 
neurotrophic factor, neme growth factor (NGF) and the 
structurally and functionally related molecules brain- 
derived neurotrophic factor (BDNF), neurotrophin 3 
(NT-3) and NT-4. The neurotrophins exert their functions 
by binding to specific cell surface receptors. The first 
identified neurotrophin-binding molecule is a widely 
expressed protein which can bind al1 neurotrophins with 
low affinity (designated p75 or low-affinity neurotrophin 
receptor). However, a group of tyrosine kinase receptors 
denoted trkA, trkB and trkC seem to be more important 
for mediating the effects of neurotrophins. NGF binds to 
trkA, BDNF and NT-4 selectively activate trkB, and the 
physiological receptor for NT-3 seems to be trkC 
(reviewed by Barbacid, 1995). The existence of 
alternative forms of the trkA, trkB and trkC tyrosine 
kinase receptors, as well as truncated forms of trkB and 
trkC which lack the tyrosine kinase domain add an extra 
leve1 of complexity. The neuro-trophins, by activating 
their cognate receptors, stimulate differentiation and 
neurite outgrowth, and support the suwival of different, 
but overlapping, groups of neurons (reviewed by Snider, 
1994). 

  he re is  a wealth of circumstantial evidence 
implicating neurotrophins in PNS regeneration. When a 
peripheral neme is transected, the normally low levels of 
NGF, BDNF and NT-4 in the nerve increase dramatically 
in the distal neme stump (Heumann et al., 1987a; Meyer 
et al., 1992; Funakoshi et al., 1993). Moreover, some 
neurotrophins are expressed at increased levels in target 
tissues after denewation, i.e. BDNF mRNA expression is 
strongly elevated in muscle (Funakoshi et al., 1993; 
Koliatsos et al., 1993) and NGF mRNA levels increase 
in skin (Mearow et al., 1993). 

Schwann cells normally express significant levels of 
truncated trkB and trkC receptors lacking the tyrosine 
kinase domain, but very low levels of p75. This 
expression pattern of neurotrophin receptors is reversed 
in denewated Schwann cells so that high levels of p75 
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are expressed and trkB and trkC expression is strongly 
decreased (Taniuchi et al., 1986, 1988; Heumann et al., 
1987b; Frisén et d. ,  1993; Funakoshi et al., 1993). See 
Fig. 2 for a summary of changes in neurotrophin and 
neurotrophin receptor expression after injury. 

It has been suggested that p75 can bind NGF on the 
surface of reactive Schwann cells and present NGF to 
regrowing axons (reviewed by Johnson et al., 1988). 
Indeed, NGF bound to distal segments of previously 
severed sciatic nerves can enhance sensory neurite 
growth in vitro (Sandrock and Matthew, 1987a). Since 
p75 can bind al1 neurotrophins with similar affinity, it is 
reasonable to extend this hypothesis to the other 
neurotrophins. The decrease in trkB and trkC mRNA in 
the distal nerve segment after transection limits 
competition for ligand, thus enabling binding of neuro- 
trophins with low affinity to Schwann cell surfaces. 

Most studies regarding the role of neurotrophins in 
peripheral nerve regeneration have hitherto focused on 
NGF sensitive nerve cells, such as sensory and sym- 
pathetic neurons. The weak sensory axon regeneration in 
C57BUOla mice (a mouse strain in which macrophage 
recruitment is virtually absent after injury and NGF- 
synthesis increases only marginally after injury) can be 
stimulated by exogenous NGF, supporting a role for 
NGF in sensory axon regrowth (Brown et al., 1991). 
Moreover, the rate of sensory axon regeneration through 
silastic tubes has been reported to increase when NGF is 
supplied (Derby et al., 1993). However, other reports 
suggest a lesser role for NGF in nerve regeneration. p75 
and trkA expression as well as retrograde NGF-transport 
decrease in dorsal root ganglia neurons after axotomy 
(Raivich et al., 1991; Verge et al., 1992), and 
regeneration of sensory axons is not impeded when 
endogenous NGF is inactivated with anti-NGF 
antibodies (Rich et al., 1984; Diamond et al., 1987, 
1992). Additionally, it does not appear that NGF is 
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Fig 2. Schematic drawing illustrating alterations in immunoreactivity 
and/or mRNA for neurotrophins and neurotrophin receptors after central 
and peripheral nerve injury. See the text for references. 

involved in survival of sensory neurms after injury @ch 
et al., 1984) or regmwth of lesioned sympathetic axons 
(Gloster and Diamond, 1992). Thus, although NGF is 
synthesized at highly elevated levels after 
injury, it does not seem to be involved in sensory or 
sympathetic axon regeneration. However, data have been 
presented which indicate that NGF is involved in lesion- 
induced collateral sprouting of undamaged sensory 
neurons (which increase their p75 mRNA expression) 
and sympathetic neurons (Mearow et al., 1991; Diamoed 
et al., 19921.3; Gloster and Diamond, 1992). The decrease 
in p75 mRNA in sensory neurons after axotomy may 
indicate that neurotrophins are not involved in sensory 
axon regeneration. However, trkB and trkC mRNA are 
increased in dorsal root ganglia neurons after axotomy 
(Ernfors et al., 1993) suggesting that BDNF, NT-3, 
and/or NT-4 could be important for sensory neurons 
after injury. 

BDNF promotes the survival of axotomized moto- 
neurons in neonatal rats (Sendtner et al., 1992a; Yan et 
al., 1992; Koliatsos et al., 1993). In contrast to trkA 
mRNA in sensory neurons, trkB expression by 
motoneurons increases after axotomy (Piehl et al., 1994; 
Kobayashi et al., 1996). The increase in trkB mRNA 
probably results in an accumulation of trkB receptors in 
the axonal growth cone, which cocould make motmeurons 
more sensitive to local and target-derived neurotrophin. 
A recent study in genetically engineered mice lacking 
trkB receptors, has indeed demonstrated that trkB is 
required for the survival of some facial motoneurons 
after axotomy (Alcántara et al., 1997). 

The expression of neurotrophins and neurotrophin 
receptors is altered also after injuries in the central 
nervous system (see Fig. 2). NGF levels are transiently 
elevated at CNS injuries (Bakhit et al., 1991; Ishikawa et 
al., 1991; Lindholm, 1992). NGF synthesis in astrocytes 
can be induced in vitro by severa1 cytokines and other 
molecules (Gadient, 1990; Lindholm et al., 1990; 
Spranger et al., 1990; Pechán et al., 1992, 1993; Zafra et 
al., 1992; Ladenheim, 1993), and the increase in NGF at 
a CNS injury may be due to increased levels of 
macrophage-derived cytokines. BDNF mRNA has been 
found to increase in neurons in the brain afta ischemia 
and hypoglycemia (Lindvall et al., 1992) but not in glial 
cells after traumatic injuries (Lindholm et al., 1992). p75 
and truncated trkB receptors are expressed at high levels 
by reactive astrocytes as well as by leptomeningeal cells 
at CNS injuries (Brunello et al., 1990; Frisén et al., 
l992,1993a,c; Risling et al., 1992; Beck et d., 1993). 

At this point, only speculations can be made 
regarding the function of non-neurona1 expraxion of p75 
and truncated trkB receptors in the injured CNS. It is 
unlikely that truncated trkB receptors can transduce a 
signal to the cell since they lack the catalytic tyrosine 
kinase domain. It is also doubtful whether p75 on glial 
cells can mediate any biologicai effect of neurotrophins, 
although evidence has been presented for NGF signaling 
and internalization via p75 in glial cells (Kahle and 
Hertel, 1992; Carter et al., 1996). Both p7S and 
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truncated trkB receptors could perhaps serve a function 
by binding and accumulating neurotrophins at the site of 
the injury, thus making them available for axonal 
endbulbs. Neurotrophins bound to the surfaces of non- 
neuronal cells at a CNS lesion could possibly stimulate 
axonal growth. However, the immunoglobulin-like 
domains in the ectodomain of trk family receptors can 
inhibit neurite growth (Tannahill et al., 1995), and the 
high expression of truncated trkB receptors by reactive 
astrocytes rnay thus possibly inhibit axon-growth. 

In addition to  the neurotrophins, many other 
neurotrophic factors have been suggested to be of 
importance after neuronal injury. Moreover, severa1 
growth factors, best known for their effects on cells 
outside the nervous system, can stimulate axonal growth 
or promote neuronal survival and have been implicated 
in axonal regeneration, although the roles of these 
factors have not yet been studied as thoroughly as the 
effects of neurotrophins (see e.g. Raivich and 
Kreutzberg, 1993). The expression of ciliary neuro- 
trophic factor (CNTF) decreases dramatically in the 
distal stump of a severed peripheral nerve (Sendtner et 
al., 1992b), but is expressed in reactive astrocytes after 
CNS injury (Ip et al., 1993). CNTF lacks a signal 
sequence and does not seem to be secreted from cells. 
However, CNTF rnay possibly be released from 
damaged cells, and the retrograde transport of this 
molecule is indeed increased after injury (Curtis et al., 
1993). Glial cell-line derived neurotrophic factor 
(GDNF), a potent neurotrophic factor which is required 
for the survival of certain neurons during development 
(Moore et al., 1996; Sánchez et al., 1996), is another 
example of a neurotrophic factor that is produced at 
increased levels in injured peripheral nerves (Trupp et 
al., 1995; Hammarberg et al., 1996). 

However, in spite of the wealth of circumstantial 
evidence implicating several neurotrophic factors in 
axonal regrowth after injury, there are in fact data 
suggesting that none of them rnay be required for 
regeneration. Axons can grow into acellular peripheral 
neme segments, in which a11 ceíis have been killed and 
thus no neurotrophic factors can be synthesized (Ide et 
al., 1983; Sketelj et al., 1989). 

Acellular nerve segments predominantly consist of 
extracellular matrix tubes, and axon-growth in this 
environment suggests that extracellular matrix proteins 
rnay be of importance for regeneration. Much of the 
attention in this context has focused on laminin and 
related molecules, since this glycoprotein synthesized by 
Schwann cells is one of the strongest neurite outgrowth 
promoting matrix molecules known to date. Other matrix 
molecules which rnay affect neurite growth include for 
example collagen, fibronectin and tenascin (see Martini, 
1994). Severa1 different approaches have been used to 
study the role of laminin in axon-growth in mammals in 
vivo. Morphological studies have demonstrated that cut 

PNS axons regrow in close relation to laminin 
(Bignami et al., 1984; Liesi, 1985; Salonen et al., 1987; 
Kuecherer-Ehret et al., 1990). Other studies have shown 
the effect of blocking the interaction between axons and 
laminin. These experiments have demonstrated impeded 
axonal growth in acellular nerve segments pretreated 
with anti-laminin (or anti-fibronectin antisera) (Wang et 
al., 1992a,b), as well as weak axon-ingrowth into 
extracellular matrix-coated tubes in the presence of 
antibodies to the laminin/collagen receptor alfil- 
integrin (Toyota et al., 1990). Furthermore, the re- 
innervation of the denervated iris is slower in the 
presence of antibodies to a laminin-proteoglycan 
complex (Sandrock and Matthew, 1987b). Taken 
together, these data suggest that laminin is important in 
axonal regeneration in the PNS. 

In the CNS, astrocytes express laminin during 
development and reexpress laminin after injuries in the 
adult. However, laminin is only synthesized locally at 
injuries and not in degenerating tracts undergoing 
Wallerian degeneration (Liesi et al., 1984). Axonal 
sprouts which grow into the scar tissue that forms at the 
lesion after a spinal cord injury are closely related to 
laminin expressing astrocytes (Risling et al., 1993; 
Frisén et al., 1995a). Furthermore, when neuronal cells 
are cultured on spinal cord cryostat sections, the neurons 
attach to laminin-rich regions of the sections and orient 
their neurites after laminin in the tissue (Frisén et al., 
1995a). These data suggest that laminin rnay be involved 
in lesion-induced sprouting in the injured spinal cord. 
However, no relation was found between axonal 
sprouting and laminin in the injured optic nerve 
(Giftochristos and David, 1988). Possible explanations 
for this discrepancy rnay be differences in axonal and/or 
glial properties in the spinal cord and optic nerve. 
Differences in laminin-sensitivity in the different 
neuronal cell types could possibly be of importance; 
indeed, whereas sensory neurons (which project to the 
spinal cord) remain laminin-sensitive in adult animals 
(Unsicker et al., 1985), retina1 ganglion cell laminin- 
receptors decrease after innervation of the target tissue 
during development, and the neurite-outgrowth 
promoting effect of laminin is lost (Cohen et al., 1986, 
1989). Moreover, different populations of astrocytes in 
various parts of the CNS rnay respond differently to 
injuries, and the ability of astrocytes to support neurite 
growth in vitro depends on which part of the CNS the 
glial cells were taken from (reviewed by Wilkin et al., 
1990; Hatten et al., 1991). 

Other matrix molecules which are upregulated after 
CNS injuries include, among others tenascin, collagen, 
and fibronectin (Egan and Vijayan, 1991; McKeon et al., 
1991; Bartsch et al., 1992; Laywell et al., 1992; Risling 
et al., 1993) al1 of which rnay be of importance for axon 
growth. The expression and role of cell adhesion 
molecules belonging to e.g. the immunoglobulin and 
cadherin families, which could be important for neuron- 
glial interactions (Neugebauer et al., 1988; Tomaselli et 
al., 1988), remains to be studied in the injured nervous 



Determinants of axonal regeneration 

system. Severa1 cell adhesion molecules have been 
implicated in developmental and regenerative axon-glial 
interactions (Reichardt et al., 1990). 

Axon-growth inhibiting molecules 

Through the years theories regarding cell extension 
and migration have mostly focused on stimulating cues 
in the environment, but more recently growth control by 
repulsion has gained increasing interest. Schwab and 
collaborators have provided a large body of evidence for 
the presence of neurite growth-inhibiting molecules 
within the brain and spinal cord (reviewed in Schwab et 
al., 1993). One of the first strong indications for the 
presence of axon-growth inhibiting activity was the 
finding that cultured neurons can attach to and send out 
neurites on slices of peripheral nerves and CNS gray 
matter, but not on CNS white matter even in the presence 
of neurotrophic factors (Schwab and Thoenen, 1985; 
Carbonetto, 1987). Cocultures of neurons and glial cells 
demonstrated that neurites readily grew over astrocytes 
but when the growth cones came in contact with 
oligodendrocytes they not only ceased to grow, but 
collapsed and were retracted (Schwab and Caroni, 
1988). That oligodendrocytes are important inhibitors in 
vivo is supported by studies demonstrating that 
regeneration in the embryonic spinal cord is enhanced 
when the onset of myelination is delayed (Keirstead et 
al., 1992) or oligodendrocyte precursor cells are 
eliminated by x-irradiation (Savio and Schwab, 1990). 
Recently, some functional recovery was made possible in 
spinal cord transected paraplegic rats when axons were 
directed from the white matter to the gray matter with 
PNS grafts bridging the lesion (Cheng et al., 1996), thus 
probably circumventing the inhibitory oligodendro-cytes 
in the white matter. 

%o oligodendrocyte-derived molecules that are at 
least in part responsible for this dramatic effect on axon- 
growth are myelin-associated proteins designated NI-35 
and NI-250 (Caroni and Schwab, 1988). They seem to 
cause growth cone collapse and retraction by binding to 
neurona1 receptors which, via G-proteins, induce rapid 
influx of extracellular calcium (Bandtlow et al., 1993; 
Igarashi et al., 1993). Inhibition of axonal growth 
in vivo by these oligodendrocyte proteins is indicated 
by the fact that transected cortico-spinal and septo- 
hippocampal axons show extensive axon-growth in 
the presence of neutralizing antibodies to NI-35 and 
NI-250 (Schnell and Schwab, 1990, 1993; Cadelli and 
Schwab, 1991). Myelin-associated glycoprotein (MAG) 
is another oligodendrocyte-derived molecule that 
inhibits axonal growth in vitro (McKerracher et al., 
1994; Mukhopadhyay et al., 1994), but it may not be 
a major inhibitor in vivo (Bartsch et al., 1995). Severa1 
other molecules produced by oligodendrocytes that 
can inhibit axon-growth have been described, but their 
significance remains to be established (Schwab et al., 
1993). 

Myelin-related axonal-growth inhibiting molecules 

thus seem to be very important inhibitors of axonal 
regeneration in the CNS. However, myelin is removed 
from degenerating tracts with time, but the axons still do 
not regrow, suggesting that other factors may be 
important. The finding that the initially strong re- 
generative response of retinal ganglion cells ceases 
within a few weeks after injury manos  and Vanselow, 
1989), led to the suggestion that the slow myelin 
removal in Wallerian degeneration in the CNS (where 
myelin is cleared away only after the regenerative 
attempts by retina1 neurons have stopped) is a major 1 
reason for the lack of regeneration in the CNS (David et I 

al., 1990). However, neurons fail to attach in vitro to 
sections of tracts undergoing Wallerian degeneration in 
the spinal cord even long &er the injury, at a time when 
little myelin can be detected (Frisén et al., 1994). 
Furthermore, lack of axon ingrowth in the adult spinal 
cord dorsal horn after dorsal root injury, where few 
oligodendrocytes are found (Carlstedt, 1985), indicates 
that factors other than myelin-related molecules 
may counteract CNS regeneration. Indeed, other 
axon-growth inhibiting factors (e.g. glial hyaluronate- 
binding protein, GHAP) are expressed by astrocytes 

1 
in areas of Wallerian degeneration, but not, or at 
substantially lower levels, in astrocytic s c m  formed at 
traumatic injuries (Mansour et al., 1990; Bovolenta et 
al., 1993). 

In the last few years, a plethora of novel axon-growth 
inhibiting molecules have been identiñed as a result of 
searches for molecules involved in axonal guidance 
during the development of the nervous system. Emerging 
evidence strongly implicate severa1 of these protehs, for 
example semaphorins, netrins and ligands for Eph- 
related tyrosine kinase receptors, in axonal pathfinding 
(Goodman, 1996), but very little is yet known regding 
their possible role in axonal re-generation. 

Cooperation vdth non-nervurus system ceBs 

Transection of a peripheral nerve results in the rapid 
disintegration of the barrier between the blood and the 
nerve tissue, i.e. the blood-nerve barrier, dista1 to the 
injury (Olsson, 1966; Mellick and Cavanagh, 1968). 
This enables the fast recruitment of mononuclear leuko- 
cytes which phagocytize degrading axons and myelin 
(see Beuche and Fride, 1984) (Fig. 3). The importante of 
macrophages in the repair after injuries in the nervous 
system is indicated by, for example, the finding that 
regeneration of sensory axons is very slow in the mouse 
strain C57BUOla, in which macrophage recruitment to 
an injured nerve is almost absent (Lunn et al., 1989). 
Macrophages which invade an injured nerve seem, via 
interleukin-1, to induce NGF-synthesis by non-neuronal 
cells (Lindholm et al., 1987; Heumann et al., 1987b), 
and the weak sensory axon remwth in C57BL/Ola mice 
can be supported by exogeñous NGF (Brown et al., 
1991). 

&ter an injury in the CNS, macrophages rapidly 
invade the lesion area. However, macrophage inñltration 
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distal to a CNS injury is slow (Fig. 3), resulting in the 
delayed clearance of debris in  tracts undergoing 
Wallerian degeneration (Frisén et al., 1994). Macro- 
phages may be detrimental or beneficia1 following CNS 
injury. Suppression of macrophage invasion after 
transient spinal cord ischemia in rabbits improves 
functional recovery and promotes motoneuron survival 
(Giulian and Robertson, 1990). A possible role for 
macrophages could be to phagocytize debris from 
axotomized neurons undergoing retrograde cell death. 
Furthermore, it is well known that a large number of 
synapses on motoneurons disappear after axotomy. In 
addition to phagocytosis of necrotic neuronal somata, 
macrophages could therefore be involved in phago- 
cytosis of terminals on moto-neurons (Blinzinger and 
Kreutzberg, 1968). Morphological indications of 
macrophage phagocytosis of neuronal elements have 
been demonstrated on seemingly intact neurites during 
development (Innocenti et al., 1983) as well as on axons 
in sciatic neme-end neuromata (Frisén et al., 1993b). An 
alternative way in which macrophages may negatively 
affect neurons unaffected by the initial trauma is by 
secreting neurotoxic molecules (Théry et al., 1991). In 
contrast, macrophages can counteract the inhibitory 
action of optic nerve white matter on neurite growth in 
vitro, and could therefore be important in axonal 
sprouting in the injured CNS (David e t  al., 1990). 
Macrophages are thus implicated in injury reactions in 
both the PNS and CNS, in part by acting as regulators of 
some of the other determinants of axonal regeneration 
mentioned above. 
The glial scar - a physical barrier for axonal 

PNS CNS 

Fig. 3. Disruption of the barrier to blood and recruitment of 
macrophages is d i i rent  in the PNS and in the CNS. In the PNS, the 
blood-neme barrier 1s disrupted throughout the distal segment of a 
severed nerve. This enables rapid invasion of macrophages which 
engulf myelin and axonal degradation products. In the CNS, the 
disruption of the blood-brain barrier is limited to the lesion are. 
Macrophages will rapidly enter the CNS at the lesion and clear this area 
from debris, but maorophage reoruitment and removal of debris distai to 
the lesion is very siow. 

The glial scar - a physical barrier for axonal 
regrowth? 

After lesions in the CNS, astrocytes both at the injury 
and in denervated tracts undergo hypertrophy and 
increase the synthesis of the intermediate filament 
proteins glial fibrillary acidic protein, nestin and 
vimentin (Eddleston and Mucke, 1993; Frisén et al., 
1995b). Within a few weeks the astrocytes form a dense 
network of processes, referred to as the glial scar. The 
fact that this tissue appears compact histologically led to 
the suggestion that it may constitute a physical barrier 
for axon regrowth (reviewed in Reier et al., 1989). An 
axon-growth inhibitory effect of astrocytes has been 
supported for example by studies on regeneration of the 
central branch from primary sensory neurons: after a 
dorsal root crush in the adult rat, the sensory axons 
regrow to the dorsal root transitional zone, where most 
axons then s top growing and form terminals on 
astrocytes (Carlstedt, 1985). When the axons make 
contact with astrocytes, the neurofilament synthesis in 
the neuronal cell body ceases. Astrocytes have therefore 
been suggested to activate an inherent neuronal 
physiological stop mechanism (Liuzzi and Lasek, 1987; 
Liuzi and Tedeschi, 1992). 

Despite the wealth of data suggesting axon-growth 
inhibition by astrocytes, these glial cells are believed to 
be important in axonal growth promotion and guidance 
during embryogenesis. Furthermore, astrocytes in 
culture form a suitable substrate for cocultured neurons, 
and neurites readily grow over the astrocytes (reviewed 
in Hatten et al., 1991). Moreover, already by the turn of 
the century scientists such as Santiago Ramón y Cajal 
noticed that after injuries in the CNS, axons sent sprouts 
into the scar formed at the lesion, although they failed to 
grow beyond this scar. The axonal sprouts in the scar 
tissue are closely associated with astrocytes. In many 
situations scar tissue sprouts seem to be aborted within 
one month after an injury (Ramón y Cajal, 1928). 
However, several studies have demonstrated that axonal 
sprouts in the spinal cord can persist for more than a 
year in the glial scar formed after an incision (Risling et 
al., 1983, 1992; Frisén et al., 1993a). After a ventral 
funiculus incision or after ventral root avulsion and 
replantation, many motoneuron axons manage to 
traverse the glial scar and reinnervate the ventral root, 
and may even reinnervate the target tissue in a functional 
manner (Cullheim et al., 1989; Carlstedt et al., 1993, 
1995). 

Ramón y Cajal hypothesized from the fact that 
axonal sprouts grow into the scar tissue formed at lesions 
that stimulatory substances for axon growth may be 
present in the scar (Ramón y Cajal, 1928). Many 
decades later this hypothesis proved to be true (Nieto- 
Sampedro et al., 1982). Among the neurotrophic factors 
that have been described to be expressed at increased 
levels in glial scars are NGF (Ishikawa et al., 1991; 
Lindholm et al., 1992), basic fibroblast growth factor 
(Frautschy et al., 1991; Ishikawa et al., 1991; Logan et 
al., 1992; Koshinaga et al., 1993), insulin-like growth 
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factor 1 (IGF-1; Garcia-Estrada et al., 1992), 
transforming growth factor4 (Lindholm, 1992), and 
CNTF (Ip et al., 1993). Furthermore, expression of 
neurite-growth promoting extracellular matrix molecules 
such as laminin, collagen, fibronectin, and tenascin rnay 
be of importance (discussed above). The majority of 
these axon-growth promoting molecules are synthesized 
by astrocytes. In addition to these axon growth- 
promoting molecules, axon growth-inhibiting activity is 
also found at CNS lesions (Rudge and Silver, 1990; 
McKeon et al., 1991). 

One explanation to the contradictory reports on the 
role of astrocytes and glial scars on axonal elongation is 
that astrocytes react differently to different types of 
injuries. Glial scars are formed both at the site of an 
injury, such as an incision, and distal to this point where 
the distal segments of the transected axons degenerate, 
i.e. Wallerian degeneration. These two types of scars, the 
type that is formed at the site of a penetrating injury and 
the type that forms in a tract undergoing Wallerian 
degeneration, differ in many respects, not least in their 
capacity to promote axonal growth. The increased 
synthesis of axon-growth promoting molecules is lirnited 
to the type of glial scar that forms at the site of the 
injury, and does not take place in the scar that forms in 
the zone undergoing Wallerian degeneration. The 
differential capacity to promote axon-growth in these 
two types of glial scars has been demonstrated in in vitro 
experiments where neuronal cells have been cultured on 
tissue sections from the injured CNS. Neurons can attach 
and extend neurites on astrocytes in sections from a glial 
scar formed at a penetrating injury, but fail to attach to 
sections of a denervated tract undergoing Wallerian 
degeneration (David et al., 1990; Frisén et al., 1994). 

The regulation of the astrocytic phenotype with 
regard to neurite-growth promotion is poorly unders- 
tood. Possible factors leading to a change in astrocyte 
properties after injury rnay for example be the direct 
trauma to the cell, a change in the extracellular 
environment caused by the blood-brain barrier disruption 
with concomitant influx of blood cells and plasma, or 
signals from severed neurons or glial cells. In vitro 
studies have identified molecules able to induce 
synthesis of NGF, BDNF, bFGF, and laminin by 
astrocytes (Gadient et al., 1990; Lindholm et al., 1990; 
Spranger et al., 1990; Pechán et al., 1992, 1993; Tom- 
Delbauffe et al., 1992; Zafra et al., 1992; Baghdassarian 
et al., 1993; Ladenheim et al., 1993). Interestingly, some 
data suggest that macrophages rnay be involved in the 
regulation of astrocytic properties after injury. Local 
high levels of TGF-B at the lesion site, probably at least 
in part derived from macrophages invading the site after 
CNS injury, rnay inhibit glial proliferation and induce 
laminin- and NGF-synthesis by astrocytes (Lindholm et 
al., 1990, 1992; Toru-Delbauffe et al., 1992; 
Baghdassarian et al., 1993). 

The ingrowth of axons into CNS scar tissue 
demonstrates that the adult mammalian CNS has a 
potential to support axon-growth. This mi@t perhaps 

involve reactivation of developmental programs used to 
support and guide growing amns during embryogenesis. 
An understanding of the molecular basis for the axon 
growth promotion by reactive glial cells, and the 
elucidation of the signals which induce this permissive 
glial phenotype rnay in the future lead to strategies to 
manipulate glial features and promote axonal 
regeneration. 

Is the blood-braln barrier a barrier for axonal 
regenemtion? 

In the intact brain and spinal cord, as well as in 
peripherai nerves, the nervous tissue is protected from 
the outer environment by a barrier to the blood. The 
barrier between the blood and the CNS, the blood-brain 
barrier (BBB), resides in the endothelium of blood 
vessels in the CNS: these endotheliai cells do not take up 
molecules by endocytosis to the same extent as do those 
outside the CNS and they are interconnected by tight 
junctions which hinder passive diffusion of molecules 
through the vessel wall. These features are believed to be 
induced in the endothelial cells by soluble factors from 
neighboring astrocytes (Janzer and Raff, 1987; Lobrinius 
et al., 1992). 

The role of the barrier between blood and nervous 
tissue in the context of nerve regeneration is intriguing. 
In most, if not all, regenerating systems no barrier is 
present during axon regrowth. In lower anhais such as 
amphibians, in which CNS regeneration is possible, the 
BBB is disrupted in the denervated part of an injured 
tract (Kiernan and Contestabile, 1980). In mammals the 
blood-nerve barrier is similarly disrupted distal to a 
peripheral nerve lesion (Olson, 1966; Mellick and 
Cavanagh, 1968). Moreover, olfactory receptor neurons 
residing in the nasal mucosa are exchanged throughout 
life in mammals, and axons from new receptor cells 
grow to the glomeruli in the olfactory bulb (Graziadei 
and Monti Graziadei, 1979). The BBB is incomplete in 
the superñcial olfactory bulb where the axon ingrowth to 
the CNS occurs (Balin et al., 1986). After injuries in the 
CNS, the BBB is disrupted locally at the site of the 
injury, and not, as in the PNS, throughout the denervated 
area (Olsson, 1966; Meiück and Cavanagh, 1968) (Fig. 
3). This defecf in the BBB is usually repaired within a 
month (Kiernan, 1985), which correlates with the 
retraction of lesion-induced sprouts in the CNS (Ram6n 
y Cajal, 1928). However, in the situation of spinai cord 
injuries, where axonal sprouts rnay persist for much 
longer times, the BBB defect is much more persistent 
(Risling et al., 1989,1990; FrisCn et al., 1993a). 

1s the correlation between axon-growth and absence 
of a barrier to the blood merely a coincidence or can the 
contact between the blood and nervous tissue be causally 
related to axonal growth? The absence of a complete 
barrier could enable molecules as well as celis to pass 
from the blood to the nervous tissue. In a peripheral 
nerve the rapid disruption of the blood-nerve barrier 
makes it possible for macrophages to enter the nerve 
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dista1 to an injury (Fig. 3). These blood-derived cells 
phagocytize myelin and axonal debris, and rnay secrete 
potent cytokines and growth factors. Macrophages 
rapidly enter the lesion area after brain or spinal cord 
trauma, but fail initially to enter the denervated tract (see 
above and Fig. 3). Macrophages rnay also be of 
importance in the injured CNS not least because of their 
ability to neutralize inhibitory properties in the 
mammalian CNS (David et al., 1990). Macrophage- 
derived cytokines rnay aiso be intimately involved in the 
glial reactions seen at the injury. In addition, molecules 
that normally circulate in plasma, such as growth factors 
and cytokines, which rnay enter the injured spinal cord at 
a site of failing blood-brain banier, could be important 
for axon growth. 

Future perspectives 

Very much has been learned about axonal re- 
generation during the past few decades, and the 
industrious activity in this field is likely to increase our 
understanding substantially during the coming years. 
The first step on the road to enhancing axonal 
regeneration in the CNS must be to promote neuronal 
survival and axonal growth. Elucidating the mechanisms 
behind injury-induced nerve cell death and determinants 
of intrinsic neuronal regenerative capacity will be of 
fundamental irnportance. Other pivotal studies for the 
near future will be further characterization of axon 
growth-inhibiting molecules in the CNS. This will 
facilitate the search for neuronal receptors transrnitting 
signals which cause axons to stop growing. 
Identification of neuronal receptors for CNS axon 
growth-inhibiting molecules, and the development of 
antagonist drugs to such receptors rnay prove 
instrumental in the treatment of brain and spinal cord 
injuries. Increased knowledge regarding the regulation of 
astrocyte features, enabling the targeted induction of an 
axon growth permissive phenotype after injury rnay also 
prove valuable. However, even if axon growth can be 
induced in the adult CNS, will these axons be able to 
navigate to their appropriate target? Misdirected growth 
of axons and innervation of inappropriate targets rnay 
very well constitute a worse situation than no axon 
growth. Axonal pathfinding during embryogenesis is 
directed by distinct molecular cues in the path of the 
growing axons and on the target cells. The molecular 
nature of some of these axon guidance cues have 
recently been unveiled. Are these guidance cues only 
expressed during embryogenesis, or are they present also 
in the adult tissues (or are they reexpressed after injury) 
so that they could direct regrowing axons to the 
appropriate target? Some experiments give reason to 
hope that this is the case (Wizenrnann et al., 1993; Bahr 
and Wizenma~,  1996). The identification of molecules 
that support or inhibit axonal growth have resulted in a 
major leap forward in our understanding of axonal 
regeneration, and it is likely that as more molecular key 
players in axonal growth are being unveiled that it soon 

rnay be possible to restore severed neural circuits in the 
injured marnmalian CNS. 
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